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Earth’s Energy Budget (Wm-2) 

The radiative imbalance between the surface and atmosphere determines how much 
energy is available to drive the hydrological cycle and the exchange of sensible heat 
between the surface and atmosphere.  
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Why It’s Important to Understand Earth’s Radiation Budget 

- Radiation imbalance between low and high latitudes is balanced by equator-
to-pole heat transported by the atmosphere and oceans. 

- The regional pattern of net radiation drives the atmospheric and oceanic 
circulations. 

CERES Net TOA Radiation 
(EBAF Ed2.6r Climatology: March 2000-June 2011) 
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How does the Earth Respond? 

IMPACTS 

Feedback 

-  Forcings include natural (sun, volcanic eruptions) and man-made 
(CO2 and other GHGs, aerosols, land cover changes, etc.). !

-  Feedbacks include those due to water vapor, temperature/lapse rate, 
surface albedo, clouds.!

Forces Acting!
On the Earth!
System!



Clouds and The Earth’s Radiant Energy System 

•  Provide continuous long-term Earth radiation budget 
observations at the top-of-atmosphere, within-atmosphere 
and surface together with coincident cloud, aerosol and 
meteorological data. 

•  To enable improved understanding of the variability in 
Earth’s radiation budget and the role clouds play. 

•  To provide data products for climate model evaluation and 
improvement. 



CERES Data Fusion: Net Radiative Effects of  Clouds on Earth’s Radiation Budget 

Top-of-Atmosphere (-20.9 Wm-2) 
-  SORCE-TIM: Solar Irradiance 
-  CERES: Reflected Solar, Emitted Thermal Flux 
-  MODIS: Cloud Detection & Properties 
-  5 Geo Satellites: Diurnal Cycle 

Within-Atmosphere (0.4 Wm-2) 
-  MODIS: Aerosol & Cloud Properties 
-  GMAO Reanalysis: Atmospheric 
State  

-  Aerosol Assimilation 
- Constraints from: AIRS, CALIPSO, 

CloudSat 

Surface (-21.3 Wm-2) 
- MODIS: Surface albedo, 

emissivity & temperature 
-  NSIDC: Snow, sea-ice coverage 



Global TOA All-Sky Radiation Anomalies 
(CERES_EBAF_Ed2.6r; 03/2000 – 06/2012)) 

Earth has steadily been accumulating energy at the rate 0.5 ± 0.43 Wm–2 (90% 
conf) during the past decade. 



Outgoing LW Radiation Anomalies (CERES) and ENSO Index 
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AIRS Temperature Anomaly (30°S-30°N) 



Co-Variability of Clouds, Radiation &  
Large-Scale Atmospheric Circulation 



•  Zonally symmetric meridional circulation with ascending motion 
over ITCZ and descending motion over subtropical high pressure 
belt. 

•  Driven by meridional differential radiative heating. Expected to 
weaken and expand under global warming. 

•  How do clouds and radiation co-vary with Hadley circulation 
strength? 

•  Do climate models reproduce observed behavior? 

Hadley Circulation 



Hadley Cell Strength and Stream Function Gradient 
• Strength of the mean meridional overturning of mass for 0-30°N for 
northern branch and 0-30°S for southern branch. 
• Determine Stokes stream function (Ψ) from zonal mean meridional 
velocity (Oort and Yienger, 1996): 

•  Strength of NH and SH 
branches of Hadley Cell: 

 Ψmax for 0-30°N  
      Ψmin for 0-30°S 

• Vertical velocity proportional to latitudinal gradient in stream function : 

• This study uses ERA-Interim monthly mean meridional velocity 



Zonal Mean Mass Streamfunction (Ψ) by Season 
P

re
ss

ur
e 

(h
P

a)
 

Latitude (deg) 

Jan 2005 Apr 2005 

Jul 2005 Oct 2005 



Analysis Domains: 3 Branches of Hadley Ciculation 

Ascend.	
  
Branch	
  

SH	
  Desc.	
  
Branch	
  

NH	
  Desc.	
  
Branch	
  

•  Stra%fy	
  CERES	
  observa%ons	
  according	
  to	
  loca%on	
  of	
  3	
  branches	
  of	
  Hadley	
  Circula%on.	
  
•  The	
  averaging	
  domains	
  change	
  with	
  season	
  (follow	
  large-­‐scale	
  circula%on).	
  





TOA LW Cloud Radiative Effect (Wm-2) January 2005 

ω500 (Wm-2) January 2005 



TOA LW Cloud Radiative Effect (Wm-2) July 2005 

ω500 (Wm-2) July 2005 



Ascending Branch 

•  Increased circulation strength:  
⇒  LW CRE increase in ascending 

branch. 
⇒  LW CRE decrease in descending 

branches 
 

CERES TOA LW CRE  Anomaly vs Stream Function Gradient Anomaly 
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-­‐  ATM	
  fluxes	
  inferred	
  from	
  CERES	
  EBAF	
  (TOA	
  &	
  SFC)	
  
-­‐  SH	
  +	
  LH	
  determined	
  from	
  WHOI	
  OAFlux	
  product	
  (ocean	
  only)	
  
-­‐  Divergence	
  of	
  total	
  energy	
  computed	
  as	
  residual:	
  	
  RCLR	
  +	
  CRE	
  +	
  SH	
  +	
  LH	
  –	
  Div_ET	
  =	
  0	
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• Current observations (e.g., A-Train) provide unprecedented detail on how 
clouds, radiation and atmospheric state co-vary in response to natural 
fluctuations in the climate system (e.g., ENSO, NAO, etc.).  

In response to intensification in Hadley circulation:  

• Magnitudes of SW & LW cloud radiative effects at TOA & SFC increase in 
ascending branch of Hadley circulation. Opposite is true in descending 
branches. 

• Net effect on radiation in ATM is cooling in descending branches. Small 
radiative impact in ascending branch due to opposing changes in clear and 
cloudy regions. 

• Changes in high cloud amount explain most of the longitudinal variability in 
radiation associated with changes in circulation strength. 

• SH+LH and divergence of total energy compensate for radiative cooling in 
descending branches. 

• Do climate models reproduce observed relationships? 

Conclusions 
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